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Abstract: The original quantitative structure-activity relationship (QSAR) formulation was proposed by Hansch and Fu-

jita in the 1960’s and, since then QSAR analysis has evolved as a mature science, due mainly to the advances that oc-

curred in the past two decades in the fields of molecular modeling, data analysis algorithms, chemoinformatics, and the 

application of graph theory in chemistry. Moreover, it is also worthy of note the exponential progress that have occurred 

in software and hardware development. In this context, a myriad of QSAR methods exist; from the considered “classical” 

approaches (known as two-dimensional (2D) QSAR), to three-dimensional (3D) and multidimensional (nD) QSAR ones.  

A distinct QSAR approach has been recently proposed, the receptor-dependent-QSAR, where explicit information regard-

ing the receptor structure (usually a protein) is extensively used during modeling process. Indeed, a limited, but growing 

number of receptor-dependent QSAR methods are reported in the literature. With no intention to be comprehensive, an 

overview of receptor-dependent QSAR methods will be discussed along with an in-depth examination of their applica-

tions in drug design, virtual screen, and ADMET modeling in silico.
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INTRODUCTION 

 Computer-assisted drug design (CADD) is the science 
and art of finding molecules of potential therapeutic value, 
which relies on computational chemistry methods. The goal 
is to discover, enhance, or study drugs and related biological 
molecules with the assistance of modern computational re-
sources. Working as a preliminary step (“pre-synthesis”) in 
rational drug design CADD significantly reduces the cost 
and time for the development of potential new drug candi-
dates. Moreover, CADD represents a viable alternative in 
cases where experiments are unfeasible, or too dangerous 
[1]. In CADD, quantitative structure-activity relationship 
(QSAR) is a crucial approach for the development of medi-
cines. One would say that nowadays no drug is developed 
without previous QSAR analyses.  

 The origin of the QSAR formalism, as we know today, is 
attributed to the works of Hansch and Fujita [2] and Free and 
Wilson [3] in 1964. The underlying theory of QSAR is that 
biological activity is directly related to molecular structure. 
Therefore, biological activity of congeneric molecular struc-
tures are related to specific molecular features (descriptors) 
by using regression techniques to estimate the relative  
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importance of those features contributing to the biological
effect. Resulting QSAR models can then be utilized to help 
guide chemical synthesis. After the 1960’s QSAR methodol-
ogy has became in a broad subfield of CADD. Thus, several 
QSAR methodologies have been proposed. Each of them can 
be characterized by having particular approaches for calcu-
lating and selecting the molecular descriptors, and specific 
statistical algorithms for constructing the resulting models 
[4-6]. 

 In the broadest sense, QSAR studies can be grouped in 
two major groups: receptor-independent (RI) and receptor-
dependent (RD) QSAR analyses [4]. The first group is re-
garding the construction of models in the absence of a well 
defined structure for the molecular target, which can be a 
nucleic acid, a protein, a receptor, or a cellular membrane 
model. This group included the “classical” (zero-dimensional), 
one-dimensional (1D), two-dimensional (2D), three-dimen-
sional (3D), and four-dimensional QSAR approaches [7]. 
The calculated descriptors are recognizable molecular fea-
tures, such as atom and molecular counts, molecular weight, 
sum of atomic properties (0D-QSAR); fragment counts (1D-
QSAR); topological descriptors (2D-QSAR); geometrical, 
atomic coordinates, or energy grid descriptors (3D-QSAR); 
and the combination of atomic coordinates and sampling of 
conformations (RI 4D-QSAR) [7]. 

 The second QSAR group, and the focus of this review, is 
regarding construction of models when the tri-dimensional 
structure of a binding site is known and can be implemented 
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when an initial compound (analog pharmacophore) is bound. 
RD-QSAR is used to gather binding interaction energies, as 
descriptors, from the interaction between the analog mole-
cules and the receptor. Since the descriptors are calculated 
by using 3D structural information of the receptor, this type 
of QSAR analysis has the potential to be more precise than 
its receptor-independent counterpart.  

 Due to the intrinsic dependence of atomic coordinates of 
both receptor and ligands, RD-QSAR includes multidimen-
sional methods (nD-QSAR), such as 4D-, 5D-, and 6D-
QSAR, among others. Without the intention to be compre-
hensive, in the next sections, some of those methods will be 
described and discussed in details. 

4D-QSAR 

 As an evolution of his Molecular Shape Analysis [8,9], 
Hopfinger proposed the 4D-QSAR formalism [10-24], which 
includes the conformational flexibility and the freedom of 
alignment by ensemble averaging in the conventional three-
dimensional descriptors found in traditional 3D-QSAR 
methods. Thus, the “fourth dimension” of the method is the 
dimension of the ensemble sampling.  

 The 4D-QSAR method was originally developed to in-
vestigate structure activity data sets where the geometry of 
the receptor was not available, i.e. RI 4D-QSAR [10-21]. 
Recently, the 4D-QSAR paradigm has been extended to ex-
plicitly include the geometry of the receptor in building a 
QSAR model. Thus, the methodology now includes the ca-
pacity to do quantitative structure-based design [22-24]. 

 The RD 4D-QSAR analysis consists of 12 steps, which 
are summarized in Table 1. A detailed description of the 
method is given in [22]. The main feature of a RD 4D-QSAR 
analysis is that the resultant pharmacophore sites of the 

Table 1. The Operational Steps in Performing a RD 4D-

QSAR Analysis [22] 

Step Description of the Step Operation 

1 Receptor pruning and atom charge assignment of the “receptor” 

2 Modeling of the data set of compounds 

3 Ligand docking 

4 Select the trial set of interaction pharmacophore elements, IPEs 

5 Constraint of selective receptor and inhibitor atoms 

6 Molecular dynamics simulations of each pruned “recep-

tor” inhibitor complex 

7 Alignment in a binding site 

8 Grid analysis 

9 Trial descriptor pool generation 

10 Partial least-squares (PLS) regression analysis 

11 Construction of RD 4D-QSAR models/GFA MLR GFA 

12 “Active” conformation postulation of the ligands 

QSAR models generated in the analysis are explicitly de-
pendent upon the combined geometries of the (bound) ligand 
and the receptor.  

 As a case study example, RD 4D-QSAR models were 
constructed for a set of 39 4-hydroxy-5,6-dihydropyrone 
analog HIV-1 protease inhibitors [24]. The receptor model 
used in this QSAR analysis was derived from the HIV-1 pro-
tease (PDB ID 1d4s) crystal structure. The bound ligand in 
the active site of the enzyme, also a 4-hydroxy-5,6-dihydro-
pyrone analogue, was used as the reference ligand for dock-
ing the data set compounds. The optimized RD 4D-QSAR 
models showed to be not only statistically significant (r2

 = 
0.86, q2

 = 0.80 for four- and greater-term models) but also 
possess reasonable predictivity based on test set predictions 
[24]. The proposed “active” conformations of the docked 
analogues in the active site of the enzyme are consistent in 
overall molecular shape with those suggested from crystallo-
graphic studies. Moreover, the RD 4D-QSAR models also 
qualitatively “captured” the existence of specific induced-fit 
interactions between the enzyme active site and each specific 
inhibitor. Hydrophobic interactions, steric shape require-
ments, and hydrogen bonding of the 4-hydroxy-5,6-dihydro-
pyrone analogues with the HIV-1 protease binding site 
model dominate the RD 4D-QSAR models in a manner, 
again, consistent with experimental conclusions. From the 
constructed models, it is possible to infer hypotheses for the 
development of new lead HIV-1 protease inhibitors [24]. 

Quasar 4D-, 5D-, AND 6D-QSAR 

 Biographics Laboratory 3R [25], led by Angelo Vedani, 
has developed a multidimensional QSAR software system 
called quasi-atomistic receptor modeling (Quasar package) 
[25]. This package includes 4D-, 5D- and 6D-QSAR model-
ing methods.  

 Quasi-atomistic receptor model refers to a three-
dimensional binding-site surrogate, represented by a surface 
surrounding a series of ligands (superimposed in their bioac-
tive conformation) at van der Waals distance and populated 
with atomistic properties (hydrogen bond donors and accep-
tors, hydrogen bond flip-flop particles, salt bridges, neutral 
and charged hydrophobic particles, void space mapped on 
it). Vedani’s 4D-QSAR approach refers to the possibility to 
represent each ligand molecule by an ensemble of conforma-
tions, orientations or protonation states, similar to Hopfin-
ger’s 4D-QSAR approach.  

 In order to address the induced fit problem, Vedani’s 
group extended his 4D-QSAR approach [26-29] by propos-
ing the 5D-QSAR method [30]. The “fifth dimension” refers 
to a multiple representation of receptor induced-fit models, 
constructed from experimental data or random placement of 
physicochemical properties to aid in the construction of op-
timal QSAR models. In contrast to other 3D-QSAR tech-
niques, 5D-QSAR approach allows for a receptor surface, 
individually adapted to each ligand molecule used in the 
study as well as for H-bond flip-flop particles, mimicking 
Ser, Thr, Tyr, Cys, His, Asn and Gln residues engaging in 
differently directed H-bonds with different ligand molecules. 
A family of receptor surface models is then generated by 
means of genetic algorithms combined with cross-validation 
protocols. Whereas, the “sixth dimension” of the Quasar 
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package (6D-QSAR) refers to simultaneous evaluation of 
different salvation modes [31]. Table 2 shows the Quasar 
operational steps. 

Table 2. The Operational Steps in Performing a Quasar nD-

QSAR Analysis [25-27] 

Step Description of the Step Operation 

1 Generation of the receptor surface. A mean van der Waals 

surface of the receptor (generated about all ligands defining the 

training set) is adapted to the topology of each ligand mole-

cule. Thus, a local induced fit is mimicked.  

2 Generation of an initial family of parent structures. Quasi-

atomistic properties are mapped onto equally distributed points 

of the individual surface. 

3 Evolution of a model family. Using a genetic algorithm, the 

initial family of receptor models is evolved using both cross-

over and mutation events. 

4 Estimation of ligand relative free energies of solvation during 

the ligand binding process.  

5 Analysis and evaluation of the constructed models.  

 As a case study example Quasar a 6D-QSAR models 
was constructed for a set of structurally diverse ligands of 
the estrogen receptor. The statistical results (q2

 = 0.903; p2
 = 

0.885) suggest that the model seems suitable for the identifi-
cation of features associated with the endocrine-disrupting 
potential of drugs and chemicals [31]. 

FREE ENERGY FORCE FIELD (FEFF) 3D-QSAR 
ANALYSIS 

 Tokarski and Hopfinger have proposed the free energy 
force field (FEFF) 3D-QSAR method in which all of the 
enthalpy and entropy contributions to the ligand-receptor 
interaction in a solvent medium are taken into account. 
Moreover, the enthalpy and entropy contributions are treated 
as independent variables in developing QSAR models for 
ligand-receptor binding processes.  

 Energy terms of a force field is used for estimating the 
thermodynamics of the ligand-receptor interaction, resulting 
in a “QSAR force field” for the particular ligand-class/ 
receptor system [32]. FEFF 3D-QSAR method is a true RD 
QSAR approach using the solved 3D structure of the recep-
tor in the calculation of ligand-receptor interaction values.  

 The FEFF 3D-QSAR formalism [32] can be summarized 
as follows. The ligand receptor interaction can be expressed 
as 

L.M + R.M

K

 (LR).M           (1) 

(Unbound state) (Bound state) 

where L is the ligand, R is the receptor, M is the solvent  
medium, and K is the equilibrium, or binding, constant.  
The binding free energy, G, of a ligand, L, to a receptor, R, 
in a solvent medium, M, is equal to the difference in free 
energy of the bound state and unbound states and can be 
expressed as 

G = GLR - (GL + GR) = - RT ln K           (2)

where G is the binding free energy, GLR is the free energy of 
the bound, or complex, state, GL is the free energy of the 
unbound ligand, GR is the free energy of the unbound recep-
tor, R is the gas constant and T is the temperature of the sys-
tem. The free energy of an enzyme-ligand complex can be 
approximately broken down into a set of component interac-
tions as follows,  

GLR = [GLR(LL) + GLR(RR) + GLR(MM)+ GLR(LR) +
GLR(LM) + GLR(RM)]            (3)

where GLR (XY) refers to the interaction between X and Y 
where they each can be L, M or R. 

 The interaction terms can be divided into their respective 
enthalpy, HLR, and entropy, SLR, contributions. 

GLR = HLR  TSLR.            (4)

 At low solute concentration the enthalpy terms, HLR(XY), 
can be represented by their respective internal energies, 
ELR(XY), 

HLR = ELR = [ELR(LL) + ELR(RR) + ELR(MM)+ ELR(LR) +
ELR(LM) + ELR(RM)]            (5) 

and the entropy term, SLR(XY), contributions can be ex-
pressed in the same manner, 

SLR = [SLR(LL) + SLR(RR) + SLR(MM) + SLR(LR) + SLR(LM)
+ SLR(RM)]             (6) 

 The unbound ligand, GL, and receptor, GR, free energies 

have the following components 

GL = [GL(LL) + GL(LM) + GL(MM)],          (7)

GR = [GR(RR) + GR(RM) + GR(MM)].          (8)

 The enthalpy contributions of L and R at low concentra-
tion, HL(XY) and HR(XY) can also be represented by their 
internal energies, EL(XY) and ER(XY) as in Equations 5 and 
6. The complete set of contributions to the internal energy 

and entropy, and their representations, are given in Table 3.

 The terms in Table 3 can be selected as the independent 
variables used in the FEFF 3D-QSAR analysis. However, the 
free energy of binding, G, can also be represented by the 

individual free energy force field terms for L, R, and LR. 

G = 1 Estretch + 2 E + 3 Etorsion + 4 EvdW +
5 Eelectrostatic + 6 Ehydrogen bonding + 7 Esolvation 8T S,

              (9)

where Estretch is the unbound to bound change in internal 
energy for bond stretching, Ebend is the change in bond an-
gle bending energy, Etorsion is the change in torsional en-
ergy, EvdW is the change in van der Waals interaction en-
ergy, Eelectrostatic is the change in electrostatics interaction 
energy, Ehydrogen bonding is the change in hydrogen bonding 
energy, Esolvation is the change in solvation energy, and S is 
the total change in the entropy of the L, R,M system which 

can be partitioned into component contributions. 

 The hydration shell model proposed by Hopfinger [33, 
34] was included in the potential energy function to calculate 
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the solvation energies. Only the L and R components to the 
free energy of aqueous salvation can be extracted from this 
model. Thus, only these energy terms can be used as trial 
descriptors in building a FEFF 3D-QSAR model. 

 FEFF 3D-QSAR was successfully applied to a set of pep-
tidometic rennin inhibitors [32], to a set of glucose analogue 
inhibitors of glucogen phosphorylase [35], and to a set of 
Plasmodium falciparum dihydrofolate reductase inhibitors 
[36]. 

MEMBRANE INTERACTION (MI)-QSAR 

 A methodology called membrane interaction (MI)-QSAR
analysis, which is a combination of structure-based design 
with classic intramolecular QSAR analysis, was proposed to 
model chemically and structurally diverse compounds inter-
acting with cellular membranes [37].  

 In MI-QSAR analysis the assumption is made that the 
phospholipid regions of a cellular membrane constitute the 
“receptor” required in structure-based design that permits 
incorporation of structural and chemical diversity into a 
training set. A set of membrane solute intermolecular prop-
erties are determined and added to a set of comprehensive 
intramolecular solute QSAR descriptors to enlarge the trial 
QSAR descriptor pool and, ostensibly, to provide the infor-
mation needed to incorporate chemical and structural diver-
sity into the QSAR analysis.  

 The MI-QSAR descriptor terms have proven to be sig-
nificant in generating models for predicting eye irritation to 
chemicals [37, 38], Caco-2 cell permeation coefficients of 
molecules [39, 40], blood brain barrier partitioning of mole-
cules [41], characterization of skin penetration of organic 
chemicals [42], and other ADMET properties [43]. 

 An important strength of the MI-QSAR approach is to be 
able to construct simple and statistically significant relation-
ships and a corresponding general mechanistic equation. 
That is, MI-QSAR analysis is able to generate meaningful 
ADME property models employing a limited number of de-
scriptors that can be directly interpreted in terms of physi-
cally reasonable mechanisms of action. There is no need to 
resort to generating very large numbers of [only] in-
tramolecular solute descriptors and then producing a model 
that meets the statistical constraints of acceptance by per-
forming some type of data reduction.  

COMBINE 

 Ortiz and colleagues developed a RD 3D-QSAR method 
called comparative binding energy (COMBINE) analysis 
[44], which relies on the use of a series of structures of 
ligand–receptor complexes (modeled or experimentally de-
termined) to quantify interaction energies by molecular me-
chanics computations.  

 The method can be summarized as follow [44]: 

1. Selection of experimental binding data values (IC50, Kd,
Ki, etc.) for the training set of ligand-receptor com-
plexes. 

2. Selection or modeling of the structures receptor-ligand 
complexes. 

3. Energy minimization of all models. 

4. Calculation of ligand-receptor interaction energy. 

5. Partitioning of each ligand-receptor interaction energy 
into van der Waals and electrostatic contributions per 
receptor residue. 

6. Correlation of the binding data values with the different 
components of the interaction energy by using partial 
least squares (PLS) regression. 

7. Internal and external validation of the QSAR model. 

 COMBINE models not only score the complexes, but 
also highlight interactions important for the differences in 
binding amongst the training set, and thus serve as an aid to 
molecular design. Moreover, in COMBINE analysis the 
training set can consist of complexes with one receptor and 
different ligands, one ligand and different receptors, or sev-
eral different ligands and several different receptors.  

 COMBINE models have been successfully constructed in 
a number of cases [45-50]. It has also been demonstrated that 
regression-based QSAR models derived with COMBINE 
analysis are suitable for fast virtual screening of compound 
databases [51].  

 According to reported results, COMBINE can yield pre-
dictive models and mechanistic insights can be obtained. 
However, the predictive ability of the method can be ex-
pected to be significantly enhanced by improvements in the 
description of the electrostatic term, the inclusion of suitable 

Table 3. Breakdown of the FEFF Interaction Terms, XY, for Ligand (L) – Receptor (R) in a Solvent Medium (M) 

Binding Component Type of Interaction Energy, XY Change in Internal Energy  Change in Entropy 

Ligand L Intramolecular ligand conformation energy LL EL(LL) = ELR(LL) – EL(LL) SL(LL) = SLR(LL) – SL(LL) 

 Ligand salvation energy LM EL(LM) = ELR(LM) – EL(LM) SL(LM) = SLR(LM) – SL(LM) 

Solvent M Solvent reorganizational energy MM EM(MM) = ELR(MM) –  

 [EL(MM) + ER(MM)] 

SM(MM) = SLR(MM) –  

 [SL(MM) + SR(MM)] 

Receptor R Intramolecular receptor conformational energy RR ER(RR) = ELR(RR) – ER(RR) SR(RR) = SLR(RR) – SR(RR)

 Receptor solvation energy RM ER(RM) = ELR(RM) – ER(RM) SR(RM) = SLR(RM) – SR(RM) 

Ligand-receptor RL Intermolecular ligand-receptor LR ELR(LR) = ELR(LR) SLR(LR) = SLR(LR) 
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descriptors for solvation and entropic effects, and the optimi-
zation of particular aspects of the methodology, such as the 
choice of ligand fragment definitions and the details of the 
variable selection protocol. 

AFMoC 

 Klebe and colleagues developed adaptation of fields for 
molecular comparison (AFMoC) [52], which can be consid-
ered as a reverse comparative molecular field analysis 
(CoMFA), since molecular interaction fields (MIFs) of the 
receptor are computed on a grid over the binding site using 
knowledge-based pair-potentials and multiplied by Gaussian 
functions at the positions of atoms in docked ligands. PLS 
analysis is applied in a similar way to CoMFA to weight the 
contributions of different atom-types on the grid and derive 
an expression for binding affinity. Thus, one could say that 
AFMoC is a receptor-dependent “version”of CoMFA. 
AFMoC allows one to gradually move from general knowl-
edge-based potentials to receptor-specific adapted potentials.  

 Recently, an extension of AFMoC called consensus ad-
aptation of fields for molecular comparison (AFMoC

con
)

[53], which takes into account multiple ligand conformations 
in an ensemble of receptor configurations. AFMoC

con
 ap-

proach yields reasonable accurate binding affinity predic-
tions and seems to alleviate the need to choose an “appropri-
ate” receptor structure among several alternatives.  

 The AFMoC approach generates receptor-specific adapted 
potential fields inside binding pockets that can be subse-
quently used for binding affinity predictions [52, 54, 55] and 
as the objective function in docking [56]. The methodology 
consists of four basic steps [52]: 

1. Potential field calculation and ligand alignment; 

2. Interaction field calculations; 

3. Correlating interaction field values with binding affini-
ties and prediction of binding affinities; 

4. Binding affinity prediction for novel ligands. 

 AFMoC overcomes the prerequisite to involve complete 
ligand training sets. In addition, since interaction fields based 
on atom types are used, interpreting the PLS results in terms 
of ligand structure optimization to achieve better binding 
affinities is straightforward. Moreover, the information con-
tained in the different atom-type based interaction fields is 
mutually orthogonal. This is an important advantage over the 
information comprised by generic fields such as “van der 
Waals” or “electrostatic” interaction used in CoMFA. Fi-
nally, since structural information of experimentally deter-
mined complexes is onverted into statistical pairpotentials, 
the latter (and the derived interaction fields) are expected to 
contain besides enthalpic also entropic effects, resulting from 
(de-)solvation [52].  

CoLiBRI 

 Tropsha’s group developed a new computational drug 
discovery method termed complimentary ligands based on 
receptor information (CoLiBRI) that combines structure-
based and ligand-based paradigms [57]. With this approach, 
both receptor active sites and their corresponding ligands are 

characterized in the same multidimensional, chemical de-
scriptor space. The idea is that mapping both binding pockets 
and the ligands onto the same chemical space would preserve 
the complementarity relationships between binding sites and 
the ligands. Thus, similar binding sites would correspond to 
similar ligands and, consequently, the relative location of a 
novel binding site in the chemistry space with respect to 
other binding sites could be used to predict the location of 
the ligand(s) complementary to that site in the ligand chemis-
try space. This virtual ligand(s) could then be used as a query 
in chemical similarity searches to identify putative ligands of 
the same receptor in available chemical databases. 

 Molecular descriptors based on transferable atom equiva-
lents (TAE)/RECON developed by Breneman and colleagues 
are [58-60] used. Such an approach is based on Bader’s 
quantum theory atoms in molecules [61]. 

 CoLiBRI consists of the following steps: 

1. Randomly selection of a subset of nVar descriptors, 
which is regarding the hypothetical topological require-
ments for a ligand to bind with a receptor. 

2. Exclusion of the receptor. 

3. Calculate the predicted ligand point in the ligand space 
for the excluded receptor based on the relative based on 
the relative orientation of ligands known to bind with 
the k most similar receptors of the excluded receptor. 

4. Predict the ligand(s) of the excluded receptor as 
ligand(s) closest to the predicted binding point in the 
ligand space. 

5. Repeat steps 2-4 in order to find the best topological 
requirements that minimize the PMR value of the 
CoLiBRI model. Such an optimization process is driven 
by a generalized simulated annealing using PMR as the 
objective function. 

6. Calculate the predictive ability (PMR) of the “model”. 

7. Select the best CoLiBRI model for nVar and k. 

 As an illustrative example, CoLiBRI was applied to a set 
of 800 X-ray characterized receptor-ligand complexes [57] in 
the PDBBinding database [62, 63]. It was shown knowledge 
of the active site structure affords identification of its com-
plimentary ligand among the top 1% of a large chemical da-
tabase in over 90% of all test active sites when a binding site 
of the same protein family was present in the training set. In 
the case where test receptors are highly dissimilar and not 
present among the receptor families in the training set, the 
prediction accuracy is decreased; however, CoLiBRI was 
still able to quickly eliminate 75% of the chemical database 
as improbable ligands. CoLiBRI affords rapid prefiltering of 
a large chemical database to eliminate compounds that have 
little chance of binding to a receptor active site [57]. 

CoRIA 

 Coutinhos’s group proposed the comparative residue 
interaction analysis (CoRIA) methodology [64], which is a 
QSAR approach for taking into account receptor-ligand in-
teractions as well as the thermodynamics of the correspond-
ing binding process.  
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 The technique was tested to a set of 36 cyclooxygenase-2 
(COX-2) inhibitors belonging to different structural classes. 
The constructed QSAR models were internally cross-
validated and boot strapping, and externally validated using a 
test set of 13 molecules. Moreover, the models are shown to 
be robust with good r2

 and q2
 values [64]. 

 The methodology can be summarized as follows [64]: 

1. Docking of the ligands to the active site of the receptor. 

2. Computation of the energy terms in the CoRIA approach 
is similar to those terms of the FEFF 3D-QSAR ap-
proach (solvation energy, strain energy, non-bonded in-
teraction energies) and a couple of intramolecular mis-
cellaneous terms for the ligands, such as the free energy 
for desolvation of the ligand in water (Fh2o) and in oc-
tanol (Foct), Jurs descriptors [65], molecular refractiv-
ity, molecular volume, lipophilicity (log P), and molecu-
lar surface area. 

3.  Optimization of the QSAR models with genetic func-
tion approximation algorithm (GFA) [66]. 

4. Analysis and validation of the QSAR models. 

COMBINING DOCKING, MOLECULAR FINGER-

PRINTS-BASED CLUSTER ANALYSIS AND ‘INDUC-

TIVE’ DESCRIPTORS FOR DERIVING STRUC-
TURE-BASED QSAR 

 Recently, Santos-Filho proposed a computer-aided drug 
design approach [67] which includes docking, molecular 
fingerprints based cluster analysis, and Cherkasov’s ap-
proach for estimating ‘inductive’ descriptors [68]. 

 Structurally diverse ligand data sets from the literature 
and from known databases were used to define its applicabil-
ity domain and to evaluate its advantages and limitations. 
When needed, molecular fingerprints-based cluster analysis 
was used for resampling the data sets. Extensive docking 
calculations were carried out in order to “capture” optimum 
intermolecular interactions of the ligands with their respec-
tive receptor binding sites. PLS and genetic algorithm were 
used for constructing the QSAR models.  

 The results presented in that study illustrate the complex 
scenario common to any drug design project, where distinct 
tools are complementarily used in order to explore multiple 
aspects of the chemical space. The constructed models 
showed to be interpretable, with high statistical and predic-
tive significance, and could be used for guiding ligand modi-
fication for the development of potential new inhibitors for 
several targets. 

 It was shown how docking and QSAR analysis can be 
used together for the construction of drug design hypothesis, 
when working with structurally diverse data sets. Moreover, 
the applicability of molecular fingerprint based cluster analy-
sis for screening and resampling that kind of data was also 
described. It was shown that the method is reliable and accu-
rate enough for calculating QSAR models for structurally 
diverse ligand data sets. 

 The advantages of the proposed 3D-QSAR approach over 
other ones are as follows: (a) No hypothetical receptor struc-

ture is used, as in the case of 6D-QSAR. Instead, actual 3D-
structures are used. (b) No ambiguous alignments are 
needed, since extensive docking simulations are carried out, 
so that the orientations of the ligands are the optima docked 
poses. (c) ‘Induced’ descriptors “capture” intermolecular 
interactions between ligands and receptors. (d) As compared 
to other methods, the computational overhead is less. 

 Not including additional conformational of the ligands 
seems to be the main limitation of the approach. Probably, 
the proposition of “active” conformations for the ligands, 
based on conformational ensemble, would improve still more 
the statistical significance of the models. However, confor-
mational ensemble calculation would certainly increase the 
computational cost. 

CONCLUSION 

 This review is not intended to be comprehensive. How-
ever, we have tried to outline the most important RD multi-
dimensional QSAR methods available at the time of writing 
the manuscript. Methods that explicitly make use of both 
receptors and ligands have been applied and validated on a 
wide-range of problems of relevance to drug design. With 
advances in high-throughput virtual screening methods, 
mainly by the development of more accurate scoring func-
tions for docking algorithms, as well as the inclusion of elec-
tronic features derived from quantum chemistry, we expect 
that structure-based QSAR methods will become increas-
ingly valuable owing to their accuracy, reliability and gen-
eral applicability. 
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